
Simulink Block Library for Fast Prototyping of Reconfigurable DSP systems

Tamás KOVÁCSHÁZY, Gábor SAMU, Gábor PÉCELI
Budapest University of Technology and Economics,

Department of Measurement and Information Systems, Budapest, Hungary
Email:{khazy,samu,peceli}@mit.bme.hu

Abstract – This paper presents a block library for Matlab/Simulink
that allows fast prototyping of reconfigurable DSP systems. Up till
now no similar software package was available. The block library
supports the construction of reconfigurable discrete time linear
and non-linear systems from reconfigurable digital filters using
various filter structures, state-space form implementations,
polynomial filters, and PID controllers. The paper lists the
requirements for the block library and introduces the main
implementation related decisions that allows the block library to
meet these requirements. An example illustrates the usage of the
block library.

Keywords – reconfigurable DSP systems, transient management
and reduction, Simulink block library

I. INTRODUCTION

Reconfigurable digital signal processing (DSP) systems
are in the center of research interest [1,2,3] because they can
efficiently model and control time-variant and/or non-linear
complex, distributed systems, e.g., industrial processes,
vehicles, etc. The design and implementation of such
reconfigurable DSP systems require multi-domain
knowledge, i.e., software and hardware engineering, digital
signal processing, fault-tolerant systems, networking, etc. To
support this complex design task, it is necessary to have
adequate software support, which should hide the
peculiarities of all the domains except one, for the non-
specialists and allow these experts to work together.

Matlab/Simulink is one of the most widely used tools for
DSP system simulation and design. Simulink makes possible
to capture complex system using a hierarchical signal flow
graph (SFG) notation, where atomic and compound signal
processing blocks are connected together to form compound
blocks, and finally the whole system under simulation or
design. Unfortunately, as nearly all other comparable tools,
Simulink lacks support for reconfigurable systems that are
composable at run-time. Although, it is possible to build such
a system using the currently available blocks but the resulting
component cannot be used as compound component to build

more complex systems in an efficient way. In addition, run-
time block substitution is not supported at all. Therefore, it is
necessary to build a Simulink block library for reconfigurable
systems. The developed block library can be used not only as
a fast prototyping tool, i.e., which allows to check the various
alternative system implementations using simulations, but it
can be considered also as a non-real-time design and
implementation prototype for hard real-time reconfigurable
DSP systems. The block library is in its final development
stage, and after the final testing, it is planned to be released as
free, downloadable software module for Matlab/Simulink.

In Section II of the paper a reconfigurable system
architecture is introduced, in which our block library
implements certain functionalities. Section III introduces the
block library, some requirements, and some major internal
architectural decisions. An illustrative example is shown in
Section IV. Section V details some possible future
development directions. Finally, conclusion are drawn in
Section VI.

II. RECONFIGURABLE SYSTEM ARCHITECTURE

The inherent complexity of reconfigurable systems can be
dealt with by introducing a component-based, layered
architecture. One possible partitioning is shown on Figure 1,
which is used in the FACT framework [4]. In this paper, the
right side of Figure 1 is in the center of interest, because all
the transient management and reconfiguration related
components/layers are there. The components in Figure 1 are
the following:

• Global supervisory controller (GSC),
• Reconfiguration manager (RM),
• Local Blocks (LB),
• Sensors and actuators,
• System identification,
• Data plane.

This paper introduces a Matlab/Simulink block library
providing blocks primarily applicable on the LB layer, but
they may be used also on the RM layer. The reconfigurable
blocks can be used as the model for physical systems, sensor,

and actuators, which should be changed during simulation in
most practical cases also. The block library does not intend to
solve the whole problems of reconfigurable system design, it
concentrate on the reconfigured systems and transient
management exclusively. However, it is necessary to
introduce the tasks of various blocks on the right side of
Figure 1 and their relationship to the process of
reconfiguration.

The GSC component does not directly deal with transient
management and reconfiguration, because its main role:

• To capture global modes of the system,
• To produce global, high level control signals and

events (primarily used by the RM and LB
components, and not by the physical system).

Figure 1. Components of the reconfigurable system

The RM component:

• Acts as an intermediary between the GSC and
LB:

o By mapping GSC modes to LB modes
(not necessarily a one to one mapping),

• Does global transient management,
o By incorporating transient management

related information and temporary
modes, and synchronizing the transient
management related activities of LBs,

o By doing transient related decision-
making and design.

The LB components encapsulate the systems to be
reconfigured, e.g., filters, regulators, etc., and all other local
block specific functionalities, such as design from low-level
implementation specific parameters to more complex,
typically non real-time, design from specification. In
addition, the main functionality of LBs is to provide low-
level transient management, and safe block reconfiguration.
Therefore, the LB components:

• Are connected to signals and events on the data
plane,

• Operate on and produce signal and event inputs
and outputs based on local criterion by

incorporating filters, regulators (the global
criterion are incorporated by the configuration),

• Consist of the local logic (local supervisor) to do
local (and implementation specific)
reconfiguration and local transient management,

• Incorporate design procedures.
In distributed systems requiring distributed digital signal

processing, the LBs may be real controller boxes near the
plant, connected to certain sub-systems of the physical
system; for example, one or more LBs may be assigned to a
control surface of an airplane.

The data plane acts as a virtual, real-time, configurable
“wiring closet” to distribute signals and events to the
interested components coming from the signal sources. This
data plane can be realized by a low-level communication
network with such higher layer protocols on each node
(implementing the LB, RM, GSC, etc.), which provide
guaranteed real-time performance [5][6].

Physical System

Data plane (signals and events)

Sensors Actuators

Local Block (Regulators, Filters, etc.)

Reconfiguration Manager

Global Supervisory Controller

System
Identification

III. REQUIREMENTS AND IMPLEMENTATION

The development of the block library was primarily driven
by the special requirements of reconfigurable systems;
therefore, it is necessary to clearly state all the main
requirements and introduce the solutions, which assures that
the requirements are met.

A. Target Systems

The implemented block library supports a limited set of
target systems, i.e., systems to be reconfigured, in its present
form. The current list of supported target systems is the
following:

• Reconfigurable linear digital FIR and IIR filters
using the direct form, parallel form, and
resonator-based implementations [7],

• Reconfigurable state-space form linear systems,
• Reconfigurable PID controllers,
• Polynomial filters [8].

These target systems are the most common reconfigurable
system types used in the literature and; therefore, they are
essential components for basic experimentations. The block
library can be extended by new target systems. The new
target systems must follow the standards of the block library,
i.e., they need to be implement using a common interface.

All of these target systems implement a quite generic
system interface to Simulink using standard Simulink data
types and a custom, block library specific objects explained
later in the Section III.D. The configuration and initial state
related information can be specified in a static, non-
reconfigurable way as the property of the block also. The
interface needs to provide access to the following inputs and
outputs:

• System inputs and outputs (standard
Matlab/Simulink scalars, vectors, or matrices),

These design procedure functions have enabler inputs also,
because most cases the design activity has high
computational complexity, and they are used rarely, only
before and sometimes during reconfiguration. However, the
computational model of Matlab/Simulink requires the
execution of all blocks in all iterations, which would result in
the computation of these design procedure blocks in all
iterations making efficient operation impossible. The design
procedure; therefore, are programmed to do their
functionality only when the enabler signal triggers them to do
so, otherwise they return immediately. Their outputs are kept
as they were after the last computation, in other words, they
store the last computed configuration as an internal state.

• System initial internal state input (vector),
• Initial internal state load enabler input (scalar),
• Internal state output (vector),
• System configuration input (custom object),
• System configuration load enabler input (scalar)

Figure 2 shows a resonator block as example, with one
input (u), two outputs (yfbs, ys), initial internal state input and
its load enabler input (xi for the initial internal states, xv
enabler input), internal state output (xo), and finally, system
configuration and configuration load enabler inputs (RP for
the resonator coefficients, pw as enabler input).

The target system blocks implement interfaces to specify
their configuration and internal states run-time to allow run-
time reconfiguration. All these operations can be performed
only in an atomic way; therefore, the blocks, their internal
states, and their configuration are always kept in a consistent
state [4]. New configuration or initial internal states are only
loaded when their corresponding load enabler input is
signaled. The enabler inputs in the block library are
programmable, i.e., the user may select various trigger
conditions to make the block load the supplied configuration
or initial internal state, in addition, target specific internal
reconfiguration and transient management methods can be
also executed. The default trigger condition is “above 0”, but
“below 0”, “rising edge”, “falling edge” or “any edge” are
also implemented to accommodate various types of signal
sources. Most cases these enabler signals are generated by a
state machines [4] implemented as described in Section III.E.

B. Transient Management

Reconfiguration transients are identified as one of the
major problem to be solved in the context of reconfigurable
systems [1,9,10]. Therefore, transient management methods
are developed to reduce the transients to an acceptable level.

The most widely known methods of transient management
are [10]:

• One step reconfiguration,
• Multiple step reconfiguration with the gradual

variation of the intermediate configurations using
interpolation (series of one step reconfigurations),

• Input cross-fading methods,
• Output cross-fading methods,

 • State variable update methods,

u

RP

pw

xi

xw

yfbs

ys

xo

z-1

z-1

...

...

BiQuad Resonators

• Anti-transient signal injection.
The block library implements all of these transient

management methods in a target system specific way for the
appropriate target systems because all target systems have
unique aspects [4], which prohibit the design and
implementation of generic reconfiguration methods.
Unfortunately, for the same reasons, it is not possible to
formalize even a generic interface for the transient methods
contrary to the target systems.

Figure 2. Resonator block used in resonator-based filters as an
example block to show the standard interfaces of target system

blocks

The implemented methods should support reconfiguration
control and synchronization by letting higher-layer
components to control the process of the reconfiguration [4];
in other words, they may have also reconfiguration
control/enabler inputs, which specify certain aspects of their
behavior during reconfiguration. These inputs can be also
used to minimize computational resource utilization as it is
done for the design procedure; specifically, to execute the
transient management blocks only when it has to be executed,
i.e., during reconfiguration. In addition, some transient
management methods supply their own control (enabler)
signals for the design procedures and the target systems.

The target system blocks are supplemented with some
representative design procedures [4] that makes possible to
compute the coefficients of these target systems from other
system specifications. For example, design procedures to
compute resonator-based filter coefficients from transfer
functions are available. The design procedures have also a
quite common interface; they have the following inputs and
outputs:

• System configuration output (custom object), All implemented reconfiguration methods are
supplemented by an illustrative example in the block library,
which act as design patterns helping the user to start
experimentation with new ideas.

• System specification input (custom object and/or
standard data type),

• Design procedure enabler input (scalar)

C. Efficient implementation for fast prototyping

Reconfigurable DSP systems require more resources
compared to classic DSP systems because there are complex
interactions between components and these components
require resource intensive algorithms. In addition, large
number of experiments may be required during the design
phase due to the fact that research on reconfigurable system is
in an early phase, and there are very few well-established
design algorithms. However, this early phase of research also
ask for the fast inclusion of new algorithms into the block
library call for exceptional extendibility properties.

Our primary objective was to implement existing
reconfigurable algorithms in an efficient way, and experiment
with various open system parameters; therefore, all blocks are
implemented in C++ using the MEX programming interface
of Matlab. This solution has also some other advantages, such
as:

• It makes porting the C++ code to real-time
platforms very easy, because the kernel of
computations is written in a computer language
supported by the common real-time
developments environments; therefore, only the
interfaces of these kernels needs to be rewritten.

• It allows the objects to interface to other software
packages than Matlab/Simulink or to distributed
systems.

However, this solution makes inclusion of new algorithms
into the block library more complex than creating
homogenous Matlab/Simulink blocks. To ease the
development of new blocks a detailed extension guide and
examples are provided.

The block library is developed under Windows using
Matlab 6.5; therefore, currently is available under these
platforms.

D. Object transport on the SFG level

Reconfigurable system components communicate by not
only using time series of scalars and vectors as classic digital
signal processing systems, but complex compound objects are
sent to other components, such as configuration of
components, or system specification, which cannot and/or
should not be mapped to scalars and vectors, but must be
represented by special typed objects [4]. These objects needs
to implemented in a way, which allows the connection of
publisher block’s output to the inputs of the subscriber blocks
using standard Simulink connection objects, in essence, the
transport of objects directed by the SFG specified in
Simulink.

Matlab/Simulink supports construction of objects, but it is
found to be inefficient from the point of view of performance
in the Simulink environment, and it does not provide the
expected flexibility and hard to use in Simulink. Therefore, in
our implementations object are implemented in C++ and only
references (pointers in our case) are passed based on the SFG

specified in Simulink. The applied method is transparent, and
compatible with other blocks in Simulink, and it also needs
very limited resources. Universal support blocks provide
access to the member variables of these objects. By using
these block, it is possible to select member variables or
construct object from Matlab data types like scalars and
matrices.

Objects are passed by value in classic real-time distributed
systems typically, i.e., they are copied from block to block
using the communication infrastructure provided by the
distributed systems. From this point of view, our decision to
pass objects by reference seems to be inappropriate at first,
but here we must note two of the previously mentioned
premises of our design decisions again:

• Our block library is designed for efficient
Matlab/Simulink fast prototyping on a single
machine primarily, not for the seamless
realization of real-time distributed systems,

• The blocks are not intended to be plugged
directly to distributed systems, but their core
algorithm implementations may be easily ported
to other frameworks, e.g. Real-Time CORBA
and/or OCP [5], by rewriting their interfaces
according to the requirements of that framework.

E. Mixed time and event-driven operation

In typical applications, the time-driven reconfigurable
DSP components are reconfigured by event-driven systems
interpreting stimulus coming from other higher-layer
components such as on-line identification and fault-detection
and isolation, and from user input. Event-driven system
components can be described using Stateflow in Matlab,
using state-chart formalism of Harel [11].

The components of the block library are implemented to
be compatible with this mixed mode of operation, i.e., they
can be disabled and their operation can be controlled by
signals supplied by Stateflow blocks. Since the computational
model of Simulink executes all blocks in all solver iterations,
it is absolutely necessary to let these components to be
disabled, because some resource hungry operations need to
be executed only during reconfigurations.

IV. ILLUSTRATIVE EXAMPLE

Figure 3 shows an illustrative application example of the
block library. The example was set up to demonstrate the
effectiveness of the anti-transient signal injection transient
management scheme [10].

Therefore, two identical state-space type target systems
are placed on the model, reconfigured the same way using the
one-step reconfiguration [10], i.e., changing the coefficients
of the system without modification of the internal states. An
“Anti-Transient Signal Injector” (ATSI) block is placed and
interconnected with one of the blocks, to reduce the transients
caused by this block. The ATSI block gets the configuration

of the target systems, and some constants that define the span
of the anti transient signal injection in the time domain. The
system is started up, operated, reconfigured and stopped by a
“Reconfiguration Manager” Stateflow block. The outputs of
the blocks are plotted on a Simulink plotter.

The systems before and after reconfiguration are specified
by the “Filter selector” from the user interface of Simulink by
dialog boxes. The specifications are transformed to the
appropriate state-space coefficients, i.e., A, B, C, and D
matrixes by a “Filter Designer” block, which is parameterized
to do this transformation by dialog blocks. The old system is
a 4th order low-pass Butterworh type IIR filter with the cut-
off frequency of 0.2 fs. The new system is a 4th order low-pass
Chebyshev tye IIR filter with the cut-off frequency 0.1 fs, and
pass-band ripple of 0.2 dB. In other words, the system is
reconfigured to a more stringent specification.

The resulting system outputs can be examined on Figure 4.
The figure shows that by applying anti-transient signal
injection it is possible to reduce the reconfiguration transients
caused by the one step reconfiguration, if the detailed state-
space models of the target system are known.

V. FUTURE DEVELOPMENT DIRECTIONS

The block set supports a limited set of target systems,
design procedures, and transient management blocks. As the
research on reconfigurable systems develops new blocks are
to be added to the block library. In addition, after the planned
release of the block library, the feedback and development
efforts of other user will shape the block library considerably.

Support for Real-Time Workshop is under investigation,
which may be implemented in the next version of the block
library. By providing Real-Time Workshop support, the users
of the blocks library would be able to generate real-time code
for PC hardware, DSPs, microcontrollers, and real-time
operating systems (RTOS) from their Matlab/Simulink model
directly.

The block library is currently operates under Windows and
Matlab 6.5, porting it to other operating systems is not
planned but support of newer version of Matlab will be
provided.

VI. CONCLUSIONS

A block library is presented for Matlab/Simulink that
allows fast prototyping of reconfigurable DSP systems. Up
till now no similar software package was available. The block
library supports the construction of reconfigurable discrete
time systems from reconfigurable digital filters using various
filter structures, state-space form implementations, and PID
controllers. System design and transient management blocks
make the reconfigurable block library complete.

The block library can be also used as a framework and
design pattern for other researchers implementing other type
of reconfigurable systems under Matlab/Simulink, or by
researchers designing reconfigurable systems in other
environments.

The block library is implemented using C++ and Matlab’s
MEX programming interface on the Windows platform
because Matlab/Simulink does not support the construction of
reconfigurable systems in an efficient way.

ACKNOWLEDGEMENTS

The research described here was sponsored, in part, by the
Defense Advanced Research Projects Agency (DARPA) (US)
under agreement number F33615-99-C-3611 and by the
Hungarian Office of Higher Education Support Programs
under contract FKFP 0654/2000.

REFERENCES

[1]] Janos Sztipanovits, D. Michell Wilkes, Gabor Karsai, Csaba Biegl,
and Lester E. Lynd, “The Multigraph and structural adaptivity,” IEEE
Transactions on Signal Processing, vol. 41, no. 8, pp. 2695–2716,
August 1993.

[2] Gábor Péceli and Tamás Kovácsházy, “Transients in reconfigurable
DSP systems,” IEEE Trans. on Instrumentation and Measurement, vol.
48, pp. 986–989, October 1999.

[3] Youmin Zhang and Jin Jiang, “Design of integrated fault detection,
diagnosis and reconfigurable control system,” in Proceedings of the
38th IEEE Conference on Decision and Control, Phoenix, Arizona,
USA, Dec 1999, vol. 4, pp. 3587–3592.

[4] Tamás Kovácsházy, Gábor Péceli, Gyula Simon, Gabor Karsai,
“Realization and Real-time Properties of Reconfiguration and Transient
Management Methods,” Technical Report, Budapest, Hungary, 2002.
http://www.mit.bme.hu/~khazy/publications/tranman_examples_v10.p
df

[5] Linda Walls, Suresh Kannan, Sam Sander, Murat Guler, Bonnie Heck,
J.V.R. Prasad, Daniel Schrage, George Vachtsevanos, “An Open
Platform for Reconfigurable Control," IEEE Control Magazine, pp. 49-
64, June, 2001

[6] Hermann Kopetz. Real-Time Systems, Design Principles for
Distributed Embedded Applications. Kluwer Academic Publishers,
3300 AH Dordrecht, NL, 1997.

[7] Padmanabhan, M., K. Martin, and G. Péceli, Feedback-based
Orthogonal Filters: Theory, Applications, and Implementation. Kluwer
Academic Publishers, Boston-Dordrecht-London, 1996. 265 p.

[8] V. John Mathews, Giovanni L. Sicuranza, Polynomial Signal
Processing , John Wiley & Sons, Inc., New York, 2000. 452 p.

[9] Tamás Kovácsházy, Gábor Péceli, Gyula Simon, “Transients in
Reconfigurable Signal Processing Channels,” IEEE Trans. on
Instrumentation and Measurement, Vol. 50., pp. 936-940, August,
2001.

[10] Gyula Simon, Tamás Kovácsházy, Gábor Péceli, “Transient
Management in Reconfigurable Control Systems,” Technical Report,
Budapest, Hungary, 2002.
http://www.mit.bme.hu/~khazy/publications/recon_techrep.pd

[11] [8] Harel, D., “Statecharts: A Visual Formalism for Complex Systems”,
Science of Computer Programming 8, pp. 231-274, 1987.

Filter Designer
New System

Vec2Bus2

Vec2Bus1

Vec2Bus

Selector

Filter_compute

Ref_start

ATSI_start

Reconfiguration Manager

Reconfiguration
TransientMux1

Input

FPFilter
Selector

Filter Selector
Old System

FPFilter
Selector

Filter Selector
New System

TF
FP

calc
Filter

Designer

TF
FP

calc
Filter

Designer

Filter Designer
Old System

u

SM

xi

xw

y

xo

Discrete State-Space with ATSI

u

SM

xi

xw

y

xo

Discrete State-Space reference

8

4

Bus2Vec1

Bus2Vec

u

SM

x0

N1

N2

start

u~
Anti-

transient
signal
injector

Anti-Transient
Signal Injector

Figure 3 Illustrative example to demonstrate the capabilities of the transient management block library by implementing

 an anti-transient signal injections scheme

0 10 20 30 40 50 60

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4 Outputs of the anti-transient signal injection experiment. The reconfiguration occurred at 40s.

(solid line: with ATSI, dotted line: without ATSI

